Combining synaptic and cellular resonance in a feed-forward neuronal network
نویسندگان
چکیده
We derive a mathematical theory to explain the subthreshold resonance response of a neuron to synaptic input. The theory shows how a neuron combines information from its intrinsic resonant properties with those of the synapse to determine the neuron's generalized resonance response. Our results show that the maximal response of a postsynaptic neuron can lie between the preferred intrinsic frequency of the neuron and the synaptic resonance frequency. We compare our theoretical results to parallel findings on experiments of the crab pyloric central pattern generator.
منابع مشابه
Analysis of Synaptic Scaling in Combination with Hebbian Plasticity in Several Simple Networks
Conventional synaptic plasticity in combination with synaptic scaling is a biologically plausible plasticity rule that guides the development of synapses toward stability. Here we analyze the development of synaptic connections and the resulting activity patterns in different feed-forward and recurrent neural networks, with plasticity and scaling. We show under which constraints an external inp...
متن کاملA distance constrained synaptic plasticity model of C. elegans neuronal network
Brain research has been driven by enquiry for principles of brain structure organization and its control mechanisms. The neuronal wiring map of C. elegans, the only complete connectome available till date, presents an incredible opportunity to learn basic governing principles that drive structure and function of its neuronal architecture. Despite its apparently simple nervous system, C. elegans...
متن کاملThe effects of time delay on the stochastic resonance in feed-forward-loop neuronal network motifs
The dependence of stochastic resonance in the feed-forward-loop neuronal network motifs on the noise and time delay are studied in this paper. By computational modeling, Izhikevich neuron model with the chemical coupling is used to build the triple-neuron feed-forward-loop motifs with all possible motif types. Numerical results show that the correlation between the periodic subthreshold signal’...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 70 10-12 شماره
صفحات -
تاریخ انتشار 2007